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Abstract
An exact expression for the distribution of the area swept out by a drifted
Brownian motion till its first-passage time is derived. A study of the asymptotic
behaviour confirms earlier conjectures and clarifies their range of validity. The
analysis leads to a simple closed-form solution for the moments of the Airy
distribution.

PACS numbers: 02.50.−r, 05.40.−a, 05.40.Jc

The Airy distribution (not to be confused with the Airy function) occurs quite naturally in
a remarkably diverse range of problems; see [1–3] and references therein. Examples arise
when considering, e.g., the cost function for algorithms used for data storage [4], the internal
path length of rooted trees [5], the nature of fluctuations in inventory processes [6], the area
enclosed by planar random loops [7], the maximal relative height for fluctuating interfaces
[8], solid-on-solid models [9] and Gaussian signals with 1/f α spectra [10], and the avalanche
size in directed sandpile models [11]. In perhaps its most natural setting the Airy distribution
characterizes the area swept out by a Brownian excursion, i.e. the area under the Wiener
process W(t) conditioned such that W(0) = 0, W(1) = 0 with W(t) > 0 for 0 < t < 1. See
[2] for a derivation from a path integral perspective, and [12] for an excellent overview of the
wider class of Brownian area problems, many of which share similar features. It is known that
the area moments of a Brownian excursion and hence the moments of the Airy distribution
are given by [13, 14]

Mn = 4
√

πn!

�
(

3n−1
2

)
2n/2

Kn (1)
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with K0 = −1/2,K1 = 1/8 whilst for n � 2 one has the quadratic recursion

Kn =
(

3n − 4

4

)
Kn−1 +

n−1∑
j=1

KjKn−j . (2)

Slightly different definitions of the Airy distribution exist in the literature [12] which are
equivalent up to a scaling of the area variable, e.g., in [1] the moments µn = (

√
8)nMn =

2
√

π�n/�
(

3n−1
2

)
, where �n = Kn2n+1n! are the so-called Airy constants. In all cases,

however, the recursion (2) plays a fundamental role, and it is this object we focus on. It is easy
to iterate (2) for small values of n; however, it has been a long-standing challenge to identify
a simple closed-form solution for Kn which is valid for general n. Below we will show that for
all n � 1

Kn = 3

4π2

∫ ∞

0

z3(n−1)/2

Ai2(z) + Bi2(z)
dz (3)

where Ai(z) and Bi(z) are the standard, linearly independent solutions of Airy’s differential
equation F ′′(z) − zF (z) = 0.

To derive this rather elegant result we will first solve another problem, similar to but distinct
from the Brownian excursion problem described above, building on the work presented in
[15]. This ancillary problem finds application in determining the limiting behaviour of various
models associated with discrete time queues [16], cellular automaton traffic jam models [17],
etc. To set the scene, consider a stochastic process, y(t), which evolves via the Langevin
equation

dy(t)

dt
= −η + ξ(t) (4)

where ξ(t) is a zero mean noise source with correlator 〈ξ(t)ξ(t ′)〉 = δ(t − t ′) such that
ξ(t) dt = dW(t). Thus y(t) is a drifted Brownian motion. Suppose the motion starts at
y (t = 0) = x > 0 with drift parameter η > 0, and let tf denote the time at which the
process first crosses y = 0. Then the variable A = ∫ tf

0 y(t ′) dt ′ defines the area swept out
by the process till this first-passage time. One would like to know the probability density,
P(A, x), of this area variable. This was considered in [15] where it was shown, using a
backward Fokker–Planck technique, that the Laplace transform of the probability density
P̃ (s, x) ≡ ∫ ∞

0 P(A, x) e−sA dA satisfies (for convenience and clarity we work hereafter in
units where η = 1)

1

2

∂2P̃ (s, x)

∂x2
− ∂P̃ (s, x)

∂x
− sxP̃ (s, x) = 0 (5)

subject to the boundary conditions P̃ (s, x = 0) = 1 and P̃ (s, x → ∞) = 0. The solution is
given by

P̃ (s, x) = ex Ai(21/3s1/3x + 2−2/3s−2/3)

Ai(2−2/3s−2/3)
. (6)

Using this result, various asymptotic results were presented in [15] relating to the moments
〈An〉 and the tail of the probability density P(A, x) as A → ∞ when x is small. It was left
as a challenge to formally invert (6) to derive an explicit expression for P(A, x). We take up
this challenge here.

Thus we seek to evaluate the contour integral

P(A, x) = 1

2π i

∫ b+i∞

b−i∞
P̃ (s, x) esA ds (7)
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with P̃ (s, x) given by (6). The approach taken is similar to that discussed in [18] in the
context of considering the integral of the absolute value of a Brownian bridge. We first wish
to modify the contour by closing it to the left. The continuation to the left-hand side of the
complex s-plane can be accomplished by providing a cut on the negative real axis. Thus one
can represent s = r eiϕ where |arg s| < π or −π < ϕ < π . Fractional powers sµ with |µ| < 1
are to be interpreted as sµ = rµ eiµϕ so that |arg(sµ)| = |µϕ| < π . It then follows that P̃ (s, x)

is an analytic function on the cut-plane since the zeros of Ai(z) are restricted to the negative
real axis [1]. Now, if one considers that Ai(z) vanishes super-exponentially fast as z → ∞
[19]

Ai(z) ∼ 1
2π−1/2z−1/4 e− 2

3 z3/2; |arg(z)| < π, (8)

it follows that the Bromwich contour in (7) may be deformed to a Hankel-type contour around
the branch cut, starting at −∞, winding round the origin in an anti-clockwise fashion and
ending up at −∞, i.e.,

P(A, x) = 1

2π i

∫ (0+)

−∞
P̃ (s, x) esA ds. (9)

By considering the contributions above and below the branch cut one then finds that

P(A, x) = ex

2π i

∫ ∞

0

[
Ai(2−2/3 ei2π/3r−2/3(1 + e−iπ 2xr))

Ai(2−2/3 ei2π/3r−2/3)

− Ai(2−2/3 e−i2π/3r−2/3(1 + eiπ 2xr))

Ai(2−2/3 e−i2π/3r−2/3)

]
e−rA dr. (10)

This appears to be no more tractable than the original expression; however, a key simplification
comes from exploiting the identity [19]

Ai(ze±2π i/3) = 1
2 e±π i/3[Ai(z) ∓ i Bi(z)] (11)

whereupon (noting that e±iπ = −1) one can recast (10) in the form

P(A, x) = ex

π

∫ ∞

0

Ai
(
τr − xτ

−1/2
r

)
Bi(τr) − Bi

(
τr − xτ

−1/2
r

)
Ai(τr)

Ai2(τr) + Bi2(τr)
e−Ar dr (12)

with τr ≡ (2r)−2/3. This is an exact expression for the first-passage area probability density
for drifted Brownian motion in terms of the integral of a real function, valid for all A > 0 and
x > 0. It is, of course, not the same as the Airy distribution discussed above, but there are
deep connections as we shall see shortly.

To illustrate the power and utility of (12), we first consider the asymptotic behaviour of
P(A, x) as A → ∞ without making any assumption about the size of x. It is clear that in
the limit A → ∞ the integral is dominated by the contribution in the neighbourhood of r =
0, where τr → ∞. The following asymptotic expansions of Ai(z) and Bi(z) as z → ∞ are
therefore useful [19]:

Ai(z) ∼ 1

2
π−1/2z−1/4 e− 2

3 z3/2
∞∑

n=0

(−1)ncnz
−3n/2

Bi(z) ∼ π−1/2z−1/4 e
2
3 z3/2

∞∑
n=0

cnz
−3n/2

(13)

where

cn = �
(
3n + 1

2

)
�

(
n + 1

2

)
36nn!

. (14)
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Defining f (z, x) ≡ Ai(z−xz−1/2)Bi(z)−Bi(z−xz−1/2)Ai(z), it is a straightforward although
laborious task to show using (13) that as z → ∞,

f (z, x) = 1

πz1/2
sinh x − 1

4πz2
[x2 cosh x − x sinh x] + O

(
1

z7/2

)
. (15)

This is sufficient to develop the first two terms in an asymptotic expansion of P(A, x) as
A → ∞ since, to the required order, (12) now simplifies to

P(A, x) ∼ ex sinh x

π

∫ ∞

0

[
1 −

(
x2 coth x − x

2
+

5

12

)
r + O(r2)

]
e−Ar− 2

3r dr. (16)

One can easily evaluate the integral in (16) using the result [20]∫ ∞

0
rν−1 e−αr−β/r dr = 2

(
β

α

)ν/2

K̂ν(2
√

αβ) (17)

where K̂ν(z) is a modified Bessel function (we use ∧ to distinguish K̂ν from Kn). The final
step requires one to use the asymptotic expansion of K̂ν(z) as z → ∞ [19],

K̂ν(z) ∼
(

π

2z

)1/2

e−z

{
1 +

(4ν2 − 1)

8z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
+ · · ·

}
(18)

whereupon one eventually derives as A → ∞

P(A, x) ∼ ex sinh x√
π

(
2

3

)1/4 1

A3/4
exp

{
−

(
8

3

)1/2

A1/2

}

×
[

1 − 1

A1/2

(
2

3

)1/2 (
13

96
+

x2 coth x − x

2

)
+ O

(
1

A

)]
. (19)

We stress that this result is valid for all values of x > 0. For x → 0 one recovers the leading
order term conjectured in [15]. The relative size of the second term provides insight into the
regime of validity of approximations made in the queuing problems discussed in [16, 17].
With effort, one could calculate higher order terms in the asymptotic expansion if one felt so
inclined.

For completeness, it is also possible to derive the behaviour of P(A, x) as A → 0. The
exact result (12) is of little use in this regard, since the oscillatory nature of the integrand for
large r is difficult to handle. However, from the Laplace transform (6) we have as s → ∞

P̃ (s, x) = ex Ai(21/3s1/3x)

Ai(0)

[
1 − x1/2

21/2s1/2
+ O

(
1

s2/3

)]
. (20)

The leading order asymptotic behaviour of P(A, x) as A → 0 is governed by the first term
in (20). This can be inverted exactly by noting that Ai(z) = π−1√z/3K1/3

(
2
3z3/2

)
[19] and

by appealing to (17). The result is

P(A, x) ∼ 21/3

32/3�
(

1
3

) x ex

A4/3
e−2x3/9A (21)

where we have used the fact that Ai(0) = 3−2/3/�
(

2
3

)
[19]. In the limit x → 0 this reduces

to the exact distribution for the zero-drift case [15], valid for all A > 0. By reintroducing a
general drift η through the replacements x → ηx and A → η3A, one may readily see why
this is the case.

Now we turn our attention to the moments. By considering the moments from two
different perspectives we will show how to derive (3). We start by writing

〈An〉 ≡
∫ ∞

0
AnP (A, x) dA (22)
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into which we insert the formal expression (12) for the probability density P(A, x).
Interchanging the order of integration one has

〈An〉 = exn!

π

∫ ∞

0

Ai
(
τr − xτ

−1/2
r

)
Bi(τr) − Bi

(
τr − xτ

−1/2
r

)
Ai(τr)

Ai2(τr) + Bi2(τr)

dr

rn+1
. (23)

When n = 0 the right-hand side of (23) is unity for all x > 0, although a direct demonstration
of this fact is difficult and has so far eluded us. Notwithstanding, it follows that one cannot
expand (23) in powers of x when n = 0; mathematically the reason may be traced backed to
the observation that the integral∫ ∞

0

Ai(τr)Bi(τr)

Ai2(τr) + Bi2(τr)

dr

rn+1
(24)

is infinite when n = 0. However, for n � 1 this integral is finite and one can justify expanding
the right-hand side of (23) to at least O(x2). Using the fact that the Wronskian has a particularly
simple form [19]

W {Ai(z), Bi(z)} ≡ Ai(z)Bi′(z) − Ai′(z)Bi(z) = 1

π
(25)

one obtains after a change of variables

〈An〉 = xn!

π2

∫ ∞

0

τ
−1/2
r

Ai2(τr) + Bi2(τr)

dr

rn+1
+ O(x2)

= 3x

4π2
2n+1n!

∫ ∞

0

z3(n−1)/2

Ai2(z) + Bi2(z)
dz + O(x2). (26)

Next we consider the moments from the perspective of the Laplace transform, wherein
〈An〉 ≡ (−1)n∂n

s P̃ (s, x)|s=0. Expanding (6) as a power series in x one has

P̃ (s, x) = 1 + x + x21/3s1/3 Ai′(2−2/3s−2/3)

Ai(2−2/3s−2/3)
+ O(x2). (27)

The function Ai′(z)/Ai(z) has a well-known asymptotic expansion as z → ∞ [1, 12]

Ai′(z)
Ai(z)

∼ 2z1/2
∞∑

n=0

(−1)nKnz
−3n/2 (28)

where Kn is defined by the quadratic recursion relation (2). It is at this point that the connection
with the Airy distribution becomes apparent. It follows that as s → 0

P̃ (s, x) ∼ 1 + x

∞∑
n=1

(−1)nKn2n+1sn + O(x2), (29)

which implies that

〈An〉 = (−1)n
(

∂nP̃

∂sn

)∣∣∣∣
s=0

= xKn2n+1n! + O(x2). (30)

If we now compare (30) with (26) and equate the coefficient of the O(x) term we immediately
find the result for Kn given by (3). As a useful check one can evaluate (3) exactly when n = 1.
Thus, given the form of the Wronskian (25), one has that∫ ∞

0

dz

Ai2(z) + Bi2(z)
= π

[
tan−1 Bi(z)

Ai(z)

]∞

0

= π2

6
(31)

where the final step uses the asymptotic forms for Ai(z) and Bi(z) given by (13) as well the
fact that Ai(0) = 3−2/3

/
�

(
2
3

)
and Bi(0) = 3−1/6

/
�

(
2
3

)
[19]. It follows that K1 = 1/8, as
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required. Numerical evaluation of (3) using Maple confirms its correctness for 2 � n � 10.
Further, when n → ∞ one may use (13) to show that

Kn ∼ 3

4π

∫ ∞

0
z(3n−2)/2 e− 4

3 z3/2

dz

= 1

2π

(
3

4

)n ∫ ∞

0
yn−1 e−y dy = 1

2π

(
3

4

)n

(n − 1)!. (32)

This result was first proved by Takacs [6, 13] by studying directly the behaviour of (2) together
with an alternative linear recursion relation for Kn, namely

Kn = 6n

6n − 1
cn −

n−1∑
j=1

cjKn−j (33)

where the coefficients cn are given by (14). The present derivation is much simpler, and can
be extended to provide higher order terms almost trivially.

Having derived (3) somewhat indirectly, it is natural to ask whether there is a more
direct derivation. The answer is yes, and we sketch the outline proof as follows (omitting
the technical details). The starting point is (28), from which one can easily establish the two
defining recursions for Kn, (2) and (33), using formal power series methods; see e.g. [12]. With
considerably more effort (the difficulties associated with (28) being an asymptotic expansion
need careful handling) one can justify writing for n � 1

Kn = (−1)n

2π i

∫
C

Ai′(z)
Ai(z)

1

2z1/2
z3n/2 d(z3/2)

z3/2

= (−1)n

2π i

3

4

∫
C

Ai′(z)
Ai(z)

z3(n−1)/2 dz (34)

where the contour C runs along two rays; the first from ∞ e−i2π/3 to 0 and the second from 0
to ∞ ei2π/3. Taking each ray in turn, making a straightforward change of variables, and noting
that e±iπ(n−1) = (−1)n−1, one can show that

Kn = 1

2π i

3

4

∫ ∞

0

[
e−i2π/3 Ai′(e−i2π/3r)

Ai(e−i2π/3r)
− ei2π/3 Ai′(ei2π/3r)

Ai(ei2π/3r)

]
r3(n−1)/2 dr. (35)

It is now straightforward using (11) and (25) to show that (35) reduces to (3). It must be
confessed, however, that the search for this second derivation was greatly assisted by knowing
the answer first. This, coupled with the importance of (12) in its own right, explains why we
have presented the analysis in the way that we have.

We conclude by making two observations which might prove worthy of further study.
First, since An(x) ≡ 〈An〉 = (−1)n∂n

s P̃ (s, x)|s=0 it follows from (5) that

1

2

d2An

dx2
− dAn

dx
= −nxAn−1 (36)

with the boundary condition An(x = 0) = 0 for n � 1 and, by definition, A0(x) ≡ 1. This
differential equation has the formal solution

An(x) = 2n

∫ x

0
e2t

∫ ∞

t

u e−2uAn−1(u) du dt, (37)

which may be iterated to give any moment exactly, e.g., A1(x) = (x + x2)/2, etc. By taking
the limit x → 0 in (37) and by invoking (30) it follows that for n � 1

Kn = 1

2n(n − 1)!

∫ ∞

0
u e−2uAn−1(u) du. (38)
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Whether such results in conjunction with (23) add something new is unclear. Second, consider
a random variable Y whose probability density is given by

f (y) = 4

π2

y−1/3

Ai2(y2/3) + Bi2(y2/3)
. (39)

The moments of Y are Yn ≡ 8Kn+1 for n � 0, which follows from (3) after a simple change
of variables. Given the ubiquitous nature of Kn, it would be interesting to know whether this
random variable Y has a simple physical interpretation.

In summary, we have succeeded in deriving an exact expression for the probability density
for the area swept out by a drifted Brownian motion during its first passage time. Using this
result it has proved possible to derive a simple closed-form solution for Kn, and hence the
moments of the Airy distribution, in terms of the Airy functions Ai(z) and Bi(z). As well
as being of mathematical interest, the results are applicable to a wide variety of physical
problems.
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